Author:
Chatterjee Manisha,Nath Prathul,Kadian Sachin,Kumar Anshu,Kumar Vishal,Roy Partha,Manik Gaurav,Satapathi Soumitra
Abstract
AbstractIn this work, we report, the synthesis of Boron and Sulfur co-doped graphene quantum dots (BS-GQDs) and its applicability as a label-free fluorescence sensing probe for the highly sensitive and selective detection of dopamine (DA). Upon addition of DA, the fluorescence intensity of BS-GQDs were effectively quenched over a wide concentration range of DA (0–340 μM) with an ultra-low detection limit of 3.6 μM. The quenching mechanism involved photoinduced electron transfer process from BS-GQDs to dopamine-quinone, produced by the oxidization of DA under alkaline conditions. The proposed sensing mechanism was probed using a detailed study of UV–Vis absorbance, steady state and time resolved fluorescence spectroscopy. The high selectivity of the fluorescent sensor towards DA is established. Our study opens up the possibility of designing a low-cost biosensor which will be suitable for detecting DA in real samples.
Funder
Indian Space Research Organisation
Publisher
Springer Science and Business Media LLC
Cited by
46 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献