Drying and temperature induced conformational changes of nucleic acids and stallion sperm chromatin in trehalose preservation formulations

Author:

Brogna Raffaele,Fan Juezhu,Sieme Harald,Wolkers Willem F.,Oldenhof Harriëtte

Abstract

AbstractEven though dried sperm is not viable, it can be used for fertilization as long as its chromatin remains intact. In this study, we investigated drying- and temperature-induced conformational changes of nucleic acids and stallion sperm chromatin. Sperm was diluted in preservation formulations with and without sugar/albumin and subjected to convective drying at elevated temperatures on glass substrates. Accumulation of reactive oxygen species was studied during storage at different temperatures, and the sperm chromatin structure assay was used to assess DNA damage. Fourier transform infrared spectroscopy was used to identify dehydration and storage induced conformational changes in isolated DNA and sperm chromatin. Furthermore, hydrogen bonding in the preservation solutions associated with storage stability were investigated. Reactive oxygen species and DNA damage in dried sperm samples were found to accumulate with increasing storage temperature and storage duration. Non-reducing disaccharides (i.e., trehalose, sucrose) and albumin counteracted oxidative stress and preserved sperm chromatin during dried storage, whereas glucose increased DNA damage during storage. When sperm was dried in the presence of trehalose and albumin, no spectral changes were detected during storage at refrigeration temperatures, whereas under accelerated aging conditions, i.e., storage at 37 °C, spectral changes were detected indicating alterations in sperm chromatin structure.

Funder

Deutsche Forschungsgemeinschaft

Stiftung Tierärztliche Hochschule Hannover (TIHO)

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3