Effect of root interaction on nodulation and nitrogen fixation ability of alfalfa in the simulated alfalfa/triticale intercropping in pots

Author:

Zhao Yajiao,Liu XiaojingORCID,Tong Changchun,Wu Yong

Abstract

AbstractCereal/legume intercropping is likely to achieve the optimal exploitation of soil and atmospheric nitrogen (N) sources to maintain high production and quality levels with low N inputs, as an attempt to eliminate underlying environmental effects. Nevertheless, the extent of the effect of cereal/legume intercropping on nodulation and N fixation of intercropped legumes in root interaction requires extensive verification. In the present study, root interaction of alfalfa/triticale intercropping was simulated in pots with the use of root separation types (pot with no barrier (A-T), pot with nylon mesh barrier (NA-T), pot with plastic barrier (PA-T), and alfalfa alone (SA)) in pots. Moreover, the experiment was measured at a range of N levels (N21, N210) and growing stages (branching, budding and initial flowering stages) in growth chamber. As alfalfa was growing, the total nodule number (TNN), effective nodule number (ENN) and nitrogenase activity (NA) of alfalfa with A-T and other cropping systems more noticeably differed from each other at higher N levels, whereas their diversification was reduced at lower N levels. As alfalfa was growing continuously, fresh nodule weight per plant (PNW) and single fresh nodule weight (SNW) with A-T and other cropping systems were amplified more significantly. The nodulation and N fixation ability under N21 were more significant than those under N210. Dry weight of plant per pot (TDW) and nitrogen accumulation of plant per pot (TNA) with A-T were obviously higher than those with other systems in the initial flowering stage, except for TNA under N21. The parameters regarding the nodulation and N fixation ability were significantly positively correlated on the whole. However, SNW and TNA were not significantly correlated, neither were SNW and TDW. According to the mentioned results, the closer root interaction, the better the nodulation form and N fixation ability of alfalfa will be, and the higher the biomass and N accumulation of all plants in pots will be. Interspecific facilitation in alfalfa/triticale intercropping system resulted in a greater yield and N accumulation; it also ultimately enhanced nodulation and N fixation ability, which can be applied in sustainable systems to avoid N loss to the environment and enhance N use efficiency.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3