Author:
Rodriguez J. Alexis P.,Robertson Darrel K.,Kargel Jeffrey S.,Baker Victor R.,Berman Daniel C.,Cohen Jacob,Costard Francois,Komatsu Goro,Lopez Anthony,Miyamoto Hideaki,Zarroca Mario
Abstract
AbstractIn 1976, NASA's Viking 1 Lander (V1L) was the first spacecraft to operate successfully on the Martian surface. The V1L landed near the terminus of an enormous catastrophic flood channel, Maja Valles. However, instead of the expected megaflood record, its cameras imaged a boulder-strewn surface of elusive origin. We identified a 110-km-diameter impact crater (Pohl) ~ 900 km northeast of the landing site, stratigraphically positioned (a) above catastrophic flood-eroded surfaces formed ~ 3.4 Ga during a period of northern plains oceanic inundation and (b) below the younger of two previously hypothesized megatsunami deposits. These stratigraphic relationships suggest that a marine impact likely formed the crater. Our simulated impact-generated megatsunami run-ups closely match the mapped older megatsunami deposit's margins and predict fronts reaching the V1L site. The site's location along a highland-facing lobe aligned to erosional grooves supports a megatsunami origin. Our mapping also shows that Pohl's knobby rim regionally represents a broader history of megatsunami modification involving circum-oceanic glaciation and sedimentary extrusions extending beyond the recorded megatsunami emplacement in Chryse Planitia. Our findings allow that rocks and soil salts at the landing site are of marine origin, inviting the scientific reconsideration of information gathered from the first in-situ measurements on Mars.
Publisher
Springer Science and Business Media LLC
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献