Hybrid approach for solving real-world bin packing problem instances using quantum annealers

Author:

V. Romero SebastiánORCID,Osaba EnekoORCID,Villar-Rodriguez EstherORCID,Oregi IzaskunORCID,Ban YueORCID

Abstract

AbstractEfficient packing of items into bins is a common daily task. Known as Bin Packing Problem, it has been intensively studied in the field of artificial intelligence, thanks to the wide interest from industry and logistics. Since decades, many variants have been proposed, with the three-dimensional Bin Packing Problem as the closest one to real-world use cases. We introduce a hybrid quantum-classical framework for solving real-world three-dimensional Bin Packing Problems (), considering different realistic characteristics, such as: (1) package and bin dimensions, (2) overweight restrictions, (3) affinities among item categories and (4) preferences for item ordering. permits the solving of real-world oriented instances of 3 dBPP, contemplating restrictions well appreciated by industrial and logistics sectors.

Funder

Eusko Jaurlaritza

Centro para el Desarrollo Tecnológico Industrial

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Improved Newton-Raphson method with simplified Jacobian matrix and optimized iteration rate for power flow calculation of power system;Proceedings of the Romanian Academy, Series A: Mathematics, Physics, Technical Sciences, Information Science;2024-06-30

2. Hamiltonian-Based Control Approach with Pendulum Application;2024 IEEE 18th International Symposium on Applied Computational Intelligence and Informatics (SACI);2024-05-23

3. Quantum Computing Approach to Realistic ESG-Friendly Stock Portfolios;Risks;2024-04-12

4. Mixed Palletizing for Smart Warehouse Environments: Sustainability Review of Existing Methods;Sustainability;2024-02-02

5. PauliComposer: compute tensor products of Pauli matrices efficiently;Quantum Information Processing;2023-12-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3