Proline-mediated redox regulation in wheat for mitigating nickel-induced stress and soil decontamination

Author:

Atta Nimra,Shahbaz Muhammad,Farhat Fozia,Maqsood Muhammad Faisal,Zulfiqar Usman,Naz Nargis,Ahmed Muhammad Mahmood,Hassan Naveed Ul,Mujahid Nazoora,Mustafa Abd El-Zaher M. A.,Elshikh Mohamed S.,Chaudhary Talha

Abstract

AbstractNickel (Ni) is known as a plant micronutrient and serves as a component of many significant enzymes, however, it can be extremely toxic to plants when present in excess concentration. Scientists are looking for natural compounds that can influence the development processes of plants. Therefore, it was decided to use proline as a protective agent against Ni toxicity. Proline (Pro) is a popularly known osmoprotectant to regulate the biomass and developmental processes of plants under a variety of environmental stresses, but its role in the modulation of Ni-induced toxicity in wheat is very little explored. This investigation indicated the role of exogenously applied proline (10 mM) on two wheat varieties (V1 = Punjab-11, V2 = Ghazi-11) exposed to Ni (100 mg/kg) stress. Proline mediated a positive rejoinder on morphological, photosynthetic indices, antioxidant enzymes, oxidative stress markers, ion uptake were analyzed with and without Ni stress. Proline alone and in combination with Ni improved the growth, photosynthetic performance, and antioxidant capacity of wheat plants. However, Ni application alone exhibited strong oxidative damage through increased H2O2 (V1 = 28.96, V2 = 55.20) accumulation, lipid peroxidation (V1 = 26.09, V2 = 38.26%), and reduced translocation of macronutrients from root to shoot. Application of Pro to Ni-stressed wheat plants enhanced actions of catalase (CAT), peroxidase (POD), superoxide dismutase (SOD), and total soluble protein (TSP) contents by 45.70, 44.06, 43.40, and 25.11% in V1, and 39.32, 46.46, 42.22, 55.29% in V2, compared to control plants. The upregulation of antioxidant enzymes, proline accumulation, and uptake of essential mineral ions has maintained the equilibrium of Ni in both wheat cultivars, indicating Ni detoxification. This trial insight into an awareness that foliar application of proline can be utilized as a potent biochemical method in mitigating Ni-induced stress and might serve as a strong remedial technique for the decontamination of polluted soil particularly with metals.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3