Barrier properties of fungal fruit body skins, pileipelles, contribute to protection against water loss

Author:

Lendzian Klaus J.,Beck Andreas

Abstract

AbstractThe permeability of intact fungal fruit body skins (pileipelles) with respect to water and oxygen was determined for the first time. Methods that have been successfully applied to plant surfaces were used to study isolated pileipelles. Mechanically isolated skins from five genera of Basidiomycota (species of Amanita, Russula, Stropharia, Tapinella, and Tricholomopsis) were mounted between two compartments simulating the inner (fruit body) and the outer (aerial) space. Fluxes of water and oxygen across the skins were measured. Water loss via intact skins differed markedly from evaporation of water from a water surface. The skins reduced water loss by factors of 10 to 30, with permeability ranging from 2.8 to 9.8 × 10−4 ms−1. Oxygen permeability was much lower and ranged from 0.8 to 6.0 × 10−6 ms−1. Chloroform-extractable substances play a minor, but significant role as transport barrier during water permeance. Water and oxygen permeability were dependent on the humidity in the aerial compartment. Higher humidity in the air increased permeability and the hydration/water content of the skins. The ecological implications include impacts to fungal growth, sporulation and spore release.

Funder

Technische Universität München

Staatliche Naturwissenschaftliche Sammlungen Bayerns

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Reference46 articles.

1. Nobel, P. S. Physicochemical and Environmental Plant Physiology (Academic Press, 2005).

2. Hsiao, T. C. Plant responses to water stress. Annu. Rev. Plant Physiol. 24, 519–570 (1973).

3. Schönherr, J. Resistance of plant surfaces to water loss : transport properties of cutin, suberin and associated lipids. In Encyclopedia Plant Physiology, NS Vol. 12B (eds Lange, O. L. et al.) 154–179 (Springer, 1982).

4. Lendzian, K. J. Gas permeability of plant cuticles: oxygen permeability. Planta 155, 310–315 (1982).

5. Langenfeld-Heyser, R. Physiological functions of lenticels. In Trees—Contributions to Modern Tree Physiology (eds Rennenberg, H. et al.) 43–56 (Backhuys, 1997).

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3