Design and comparative characterization of RecA variants

Author:

del Val Elsa,Nasser William,Abaibou Hafid,Reverchon Sylvie

Abstract

AbstractRecA plays a central role in DNA repair and is a main actor involved in recombination and activation of the SOS response. It is also used in the context of biotechnological applications in recombinase polymerase isothermal amplification (RPA). In this work, we studied the biological properties of seven RecA variants, in particular their recombinogenic activity and their ability to induce the SOS response, to better understand the structure–function relationship of RecA and the effect of combined mutations. We also investigated the biochemical properties of RecA variants that may be useful for the development of biotechnological applications. We showed that Dickeya dadantii RecA (DdRecA) had an optimum strand exchange activity at 30 °C and in the presence of a dNTP mixture that inhibited Escherichia coli RecA (EcRecA). The differences between the CTD and C-tail of the EcRecA and DdRecA domains could explain the altered behaviour of DdRecA. D. radiodurans RecA (DrRecA) was unable to perform recombination and activation of the SOS response in an E. coli context, probably due to its inability to interact with E. coli recombination accessory proteins and SOS LexA repressor. DrRecA strand exchange activity was totally inhibited in the presence of chloride ions but worked well in acetate buffer. The overproduction of Pseudomonas aeruginosa RecA (PaRecA) in an E. coli context was responsible for a higher SOS response and defects in cellular growth. PaRecA was less inhibited by the dNTP mixture than EcRecA. Finally, the study of three variants, namely, EcPa, EcRecAV1 and EcRecAV2, that contained a combination of mutations that, taken independently, are described as improving recombination, led us to raise new hypotheses on the structure–function relationship and on the monomer–monomer interactions that perturb the activity of the protein as a whole.

Funder

French Association Nationale de la Recherche et de la Technologie

BioMerieux

Centre National de la Recherche Scientifique

Institut National des Sciences Appliquées de Lyon

Université Claude Bernard Lyon 1

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3