A novel dual feedwater circuit for a parabolic trough solar power plant

Author:

Al-Maliki Wisam Abed Kattea,Alsaedi Sajda S.,Khafaji Hayder Q. A.,Alobaid Falah,Epple Bernd

Abstract

AbstractThe validated dynamic model of a parabolic trough power plant (PTPP) is improved by the combination of a new feedwater circuit (feedwater/HTF circuit) and a reference feedwater circuit (feedwater/steam circuit) as well as the development of the steam turbine model. Such design represents the first effort of research to utilize a dual feedwater circuit inside the PTPP to increase the power output in the daylight from 50 to 68 MWel and raise night operating hours at a lower cost. The purpose of increasing the operating night hours at a power (48 MWel) as in the reference PTPP is to get rid of the fossil fuel backup system and rely only on the absorbed solar energy and the stored energy in the molten salt. During daylight hours, the feedwater circuit is operated using Feedwater/HTF. In the transient period, the feedwater/HTF circuit will gradually be closed due to a decrease in solar radiation. Furthermore, the rest of the nominal feedwater mass flow rate (49 kg/s) is gradually replenished from the feedwater/steam circuit. After sunset, the entirety of the feedwater is heated based on the steam extracted from the turbine. The purpose of this improvement is to raise the number of nightly operational hours by reducing the nominal load from 61.93 to 48 MWel as a result of low energy demand during the evening hours. Therefore, a comparison study between the reference model and this optimization (optimization 2) is conducted for clear days (26th–27th/June and 13th–14th/July 2010) in order to understand the influence of dual feedwater circuit. The comparison indicates that the operational hours of the power block (PB) will be obviously increased. Moreover, this improvement reduces based on the fossil fuel system at night. As the last step, an economic analysis was performed on the costs of the referenced and the optimized PTPP as a function of the levelized energy cost (LEC). The results illustrate that the specific energy cost of a PTPP with 7.5 h of storage capacity is lowered by about 14.5% by increasing the output of the PTPP from 50 to 68 MWel.

Funder

Technische Universität Darmstadt

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3