Alteration of functional connectivity despite preserved cerebral oxygenation during acute hypoxia

Author:

Bakker Marleen E.,Djerourou Ismaël,Belanger Samuel,Lesage Frédéric,Vanni Matthieu P.

Abstract

AbstractResting state networks (RSN), which show the connectivity in the brain in the absence of any stimuli, are increasingly important to assess brain function. Here, we investigate the changes in RSN as well as the hemodynamic changes during acute, global hypoxia. Mice were imaged at different levels of oxygen (21, 12, 10 and 8%) over the course of 10 weeks, with hypoxia and normoxia acquisitions interspersed. Simultaneous GCaMP and intrinsic optical imaging allowed tracking of both neuronal and hemodynamic changes. During hypoxic conditions, we found a global increase of both HbO and HbR in the brain. The saturation levels of blood dropped after the onset of hypoxia, but surprisingly climbed back to levels similar to baseline within the 10-min hypoxia period. Neuronal activity also showed a peak at the onset of hypoxia, but dropped back to baseline as well. Despite regaining baseline sO2 levels, changes in neuronal RSN were observed. In particular, the connectivity as measured with GCaMP between anterior and posterior parts of the brain decreased. In contrast, when looking at these same connections with HbO measurements, an increase in connectivity in anterior–posterior brain areas was observed suggesting a potential neurovascular decoupling.

Funder

Canadian Institutes of Health Research

Canada Research Chairs

Natural Sciences and Engineering Research Council of Canada

Fonds de Recherche du Québec - Santé

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3