Estimate earth fissure hazard based on machine learning in the Qa’ Jahran Basin, Yemen

Author:

Al-Masnay Yousef A.,Al-Areeq Nabil M.,Ullah Kashif,Al-Aizari Ali R.,Rahman Mahfuzur,Wang Changcheng,Zhang Jiquan,Liu Xingpeng

Abstract

AbstractEarth fissures are potential hazards that often cause severe damage and affect infrastructure, the environment, and socio-economic development. Owing to the complexity of the causes of earth fissures, the prediction of earth fissures remains a challenging task. In this study, we assess earth fissure hazard susceptibility mapping through four advanced machine learning algorithms, namely random forest (RF), extreme gradient boosting (XGBoost), Naïve Bayes (NB), and K-nearest neighbor (KNN). Using Qa’ Jahran Basin in Yemen as a case study area, 152 fissure locations were recorded via a field survey for the creation of an earth fissure inventory and 11 earth fissure conditioning factors, comprising of topographical, hydrological, geological, and environmental factors, were obtained from various data sources. The outputs of the models were compared and analyzed using statistical indices such as the confusion matrix, overall accuracy, and area under the receiver operating characteristics (AUROC) curve. The obtained results revealed that the RF algorithm, with an overall accuracy of 95.65% and AUROC, 0.99 showed excellent performance for generating hazard maps, followed by XGBoost, with an overall accuracy of 92.39% and AUROC of 0.98, the NB model, with overall accuracy, 88.43% and AUROC, 0.96, and KNN model with general accuracy, 80.43% and AUROC, 0.88), respectively. Such findings can assist land management planners, local authorities, and decision-makers in managing the present and future earth fissures to protect society and the ecosystem and implement suitable protection measures.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3