Annexin A8 regulates Wnt signaling to maintain the phenotypic plasticity of retinal pigment epithelial cells

Author:

Lueck Katharina,Carr Amanda-Jayne F.ORCID,Yu Lu,Greenwood JohnORCID,Moss Stephen E.

Abstract

AbstractWnt signalling mediates complex cell-cellinteractions during development and proliferation. Annexin A8 (AnxA8), a calcium-dependent phospholipid-binding protein, and canonical Wnt signalling mechanisms have both been implicated in retinal pigment epithelial (RPE) cell differentiation. The aim here was to examine the possibility of cross-talk between AnxA8 and Wnt signalling, as both are down-regulated upon fenretinide (FR)-mediated RPE transdifferentiation. AnxA8 suppression in RPE cells via siRNA or administration of FR induced neuronal-like cell transdifferentiation and reduced expression of Wnt-related genes, as measured by real-time PCR and western blotting. AnxA8 gene expression, on the other hand, remained unaltered upon manipulating Wnt signalling, suggesting Wnt-related genes to be downstream effectors of AnxA8. Co-immunoprecipitation revealed an interaction between AnxA8 and β-catenin, which was reduced in the presence of activated TGF-β1. TGF-β1 signalling also reversed the AnxA8 loss-induced cell morphology changes, and induced β-catenin translocation and GSK-3β phosphorylation in the absence of AnxA8. Ectopic over-expression of AnxA8 led to an increase in active β-catenin and GSK-3β phosphorylation. These data demonstrate an important role for AnxA8 as a regulator of Wnt signalling and a determinant of RPE phenotype, with implications for regenerative medicine approaches that utilise stem cell-derived RPE cells to treat conditions such as age-related macular degeneration.

Funder

RCUK | Biotechnology and Biological Sciences Research Council

Guide Dogs for the Blind Association

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Reference44 articles.

1. Turowski, P. et al. Basement membrane-dependent modification of phenotype and gene expression in human retinal pigment epithelial ARPE-19 cells. Invest. Ophthalmol. Vis. Sci. 45, 2786–2794 (2004).

2. Samuel, W. et al. Appropriately differentiated ARPE-19 cells regain phenotype and gene expression profiles similar to those of native RPE cells. Mol. Vis. 23, 60–89 (2017).

3. Ahmado, A. et al. Induction of differentiation by pyruvate and DMEM in the human retinal pigment epithelium cell line ARPE-19. Invest. Ophthalmol. Vis. Sci. 52, 7148–7159 (2011).

4. Foltz, L. P. & Clegg, D. O. Rapid, directed differentiation of retinal pigment epithelial cells from human embryonic or induced pluripotent stem cells. J. Vis. Exp. 30, 128 (2017).

5. Hazim, R. A. et al. Differentiation of RPE cells from integration-free iPS cells and their cell biological characterization. Stem Cell Res. Ther. 8, 217 (2017).

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3