Glycyrrhizic acid ameliorates submandibular gland oxidative stress, autophagy and vascular dysfunction in rat model of type 1 diabetes

Author:

Asseri Saad Mohamed,Elsherbiny Nehal M.,El-Sherbiny Mohamed,Sherif Iman O.,Alsamman Alsamman M.,Maysarah Nadia M.,Elsherbini Amira M.

Abstract

AbstractThe burden of diabetes mellitus (DM) and associated complications is increasing worldwide, affecting many organ functionalities including submandibular glands (SMG). The present study aims to investigate the potential ameliorative effect of glycyrrhizic acid (GA) on diabetes-induced SMG damage. Experimental evaluation of GA treatment was conducted on a rat model of type I diabetes. Animals were assigned to three groups; control, diabetic and GA treated diabetic groups. After 8 weeks, the SMG was processed for assessment of oxidative stress markers, autophagy related proteins; LC3, Beclin-1 and P62, vascular regulator ET-1, aquaporins (AQPs 1.4 and 5), SIRT1 protein expressions in addition to LC3 and AQP5 mRNA expressions. Also, parenchymal structures of the SMG were examined. GA alleviated the diabetes-induced SMG damage via restoring the SMG levels of oxidative stress markers and ET-1 almost near to the normal levels most probably via regulation of SIRT1, AQPs and accordingly LC-3, P62 and Beclin-1levels. GA could be a promising candidate for the treatment of diabetes-induced SMG damage via regulating oxidative stress, autophagy and angiogenesis.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3