Author:
Rong Zhicong,Zhang Menglun,Ning Yuan,Pang Wei
Abstract
AbstractWireless power transfer is one of the enabling technologies for powering implantable biomedical devices. Biocompatibility and CMOS compatibility of wireless power transfer devices are highly desired due to safety and footprint concerns. Toward implantable applications, this paper presents an ultrasound-induced wireless power supply based on AlN piezoelectric micromachined ultrasonic transducer (PMUT). The wireless power supply integrates wireless power transfer, power management and energy storage functions. The PMUT array is used as a passive wireless power receiver, followed by electrical impedance matching networks and a voltage multiplier for efficient power transmission and rectification. The output power intensity of the wireless receiver reaches 7.36 μW/mm2 with an incident ultrasound power below the FDA safety limit. The output power of the wireless power supply reaches 18.8 μW and a 100-μF capacitor is fully charged to 3.19 V after power management, which are sufficient to power many low-power implantable biomedical devices such as for neural electrical stimulation, biosensors and intrabody communication applications. The wireless power supply is implemented in a PCB with a diameter of 1 cm. With biocompatibility and CMOS compatibility of AlN thin film compared to commonly used PZT, the proposed solution paves the way for safer and ultraminiaturized wireless power supplies with further development incorporating all the functions on a monolithic chip in the future.
Funder
Natural Science Foundation of China
Tianjin Municipal Science and Technology Project
National Key Research and Development Program
Publisher
Springer Science and Business Media LLC
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献