Valorization of Eggshell Biowaste for Sustainable Environmental Remediation

Author:

Mignardi SilvanoORCID,Archilletti Luana,Medeghini Laura,De Vito Caterina

Abstract

AbstractThe management of large amounts of eggshell waste annually produced in the world is problematic as generally this material is only disposed at landfills with odor production and microbial growth. On the contrary, significant environmental and economic advantages could be obtained transforming this biowaste into new value-added products. Eggshell biowaste was the starting material for the synthesis of hydroxyapatite by a simple and sustainable procedure and applied for the removal of Co2+from aqueous solutions. The effects of contact time and initial metal concentration were investigated in batch experiments. Eggshell-based hydroxyapatite (ESHAP) before and after Co2+removal was characterized by X-ray diffraction and scanning electron microscopy. The process was rapid and reached equilibrium within 80 min. The removal efficiency was in the range 70–80% which is generally higher than other waste-derived adsorbents. Adsorption of Co2+on the surface of ESHAP particles and ion exchange with Ca2+resulting in the formation of a Co-phosphate are the main mechanisms of the metal removal. The conversion of eggshell waste to a low-cost adsorbent for the treatment of metal contaminated waters could contribute to a more sustainable and effective management of this biowaste.

Funder

Sapienza Università di Roma

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 58 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3