Molecular characterization of a galactomannan extracted from Tara (Caesalpinia spinosa) seeds

Author:

Ibieta Gabriela,Bustos Atma-Sol,Ortiz-Sempértegui Jimena,Linares-Pastén Javier A.,Peñarrieta J. Mauricio

Abstract

AbstractTara gum (TG) is a polysaccharide extracted from the seeds of a South American tree called Tara (Caesalpinia spinosa). TG is a galactomannan with many applications in the food industry, mainly as an emulsifier and stabilizer agent. In addition, it is also used in the paper and cosmetic industries. In the present study, we performed a molecular characterization based on chemical composition and physicochemical properties to understand the properties behind TG applications. TG was extracted and purified from Tara seeds distributed in different ecoregions of Bolivia. The monosaccharide composition analysis was determined by high-performance anion-exchange chromatography/pulsed amperometric detection (HPAEC-PAD). At the same time, their molecular characteristics, such as molar mass, root-mean-square radius, hydrodynamic radius, conformation, and densities, were studied by asymmetrical flow field-flow fractionation coupled to multi-angle light scattering refractive index (AF4-MALS-dRI), also the specific refractive index increment (dn/dc) was determined for the first time using AF4 for TG. The results revealed that the gum samples are galactomannans composed of mannose (Man) and galactose (Gal) in a ratio of 3.37 (Man/Gal), with an average molar mass range from 2.460 × 107 to 3.699 × 107 Da, distributed in a single population. The root-mean-square radius range from 260.4 to 281.6 nm, and dn/dc is 0.1454. The Kratky plots based on 14 scattering angles indicated that the conformation of all samples corresponds to random coil monodisperse, while their gyration radius/hydrodynamic radius ratio (ρ) is high. All these results suggest that the chains have a low branched density, consistent with the Gal/Man composition. To the best of our knowledge, we report for the first time an integrated physicochemical study of TG relevant to developing emulsifier and stabilizer formulations.

Funder

Styrelsen för Internationellt Utvecklingssamarbete

UNESCO-TWAS

Lund University

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3