Author:
Baghban Alireza,Ezedin Nejadian Hossein,Habibzadeh Sajjad,Zokaee Ashtiani Farzin
Abstract
AbstractPyrolysis gasoline is the valuable byproduct of the thermal breakdown of heavier oil fractions in an olefin unit with high aromatic content. To separate such aromatic components, firstly, this product should be hydrogenated. In this contribution, new nanostructure catalysts derived from the zeolitic metal–organic framework, namely ZIF-8 and ZIF-67, were used to investigate their hydrogenation capability. Owing to its great hydrogenation capability of Nickle, the structures of the ZIF-8 and ZIF-67 were improved by Nickle through in situ synthesis. Moreover, to enhance the pore size of catalysts and their electronic properties, the synthesized catalysts were pyrolyzed under nitrogen media at 450 °C, and five catalysts, namely Co/NC, ZnCo/NC, ZnNi/NC, CoNi/NC, and ZnCoNi/NC were created. Results indicated that the CoNi/NC showed a superior hydrogenation performance (69.5% conversion of total olefins) to others. In addition, the synthesized catalysts without the carbonization process had no conversion in the hydrogenation process because there is no active site in these structures. The current synthesized catalysts can compete with the costly Pt or Pd-based hydrogenation catalysts due to their high surface area and great electronic properties.
Publisher
Springer Science and Business Media LLC
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献