Author:
Sodeifian Gholamhossein,Garlapati Chandrasekhar,Razmimanesh Fariba,Nateghi Hassan
Abstract
AbstractKnowing the solubility data of pharmaceutical compounds in supercritical carbon dioxide (ScCO2) is essential for nanoparticles formation by using supercritical technology. In this work, solubility of solid pantoprazole sodium sesquihydrate in ScCO2 is determined and reported at 308, 318, 328 and 338 K and at pressures between 12 and 27 MPa. The solubilities are ranged between 0.0301 $$\times$$
×
10–4 and 0.463 $$\times$$
×
10–4 in mole fraction. The determined solubilities are modelled with a new model using solid–liquid equilibrium criteria and the required activity coefficient is developed using regular solution theory. The measured solubilities data are also modelled with three recent and four conventional empirical models. The recent models used are, Alwi-Garlapati (AARD = 13.1%), Sodeifian et al. (14.7%), and Tippana-Garlapati (15.5%) models and the conventional models used are Chrastil (17.54%), reformulated Chrastil (16.30%), Bartle (14.1%) and Mendenz Santiago and Teja (MT) (14.9%) models. The proposed model is correlating the data with less than 14.9% and 16.23% in terms of AARD for temperature dependent and independent cases. Among exiting models, Mendez Santiago and Teja (MT) and Alwi-Garlapati models correlate the data better than other models (corresponding AARD% and AICc are 14.9, 13.1 and −518.89, −504.14, respectively). The correlation effectiveness of the models is evaluated in terms of Corrected Akaike’s Information Criterion (AICc). Finally, enthalpy of solvation and vaporization of pantoprazole sodium sesquihydrate are calculated and reported. The new model proposed in this study can be used for the combination of any complex compound with any supercritical fluid.
Publisher
Springer Science and Business Media LLC
Reference45 articles.
1. Sodeifian, G., Razmimanesh, F., Ardestani, N. S. & Sajadian, S. A. Experimental data and thermodynamic modeling of solubility of Azathioprine, as an immunosuppressive and anti-cancer drug, in supercritical carbon dioxide. J. Mol. Liq. 2020, 299 (2020).
2. Sodeifian, G., Sajadian, S. A., Ardestani, N. S. & Razmimanesh, F. Production of loratadine drug nanoparticles using ultrasonic-assisted rapid expansion of supercritical solution into aqueous solution (US-RESSAS). J. Supercrit. Fluids 147, 241–253 (2019).
3. Sodeifian, G., Sajadian, S. A. & Daneshyan, S. Preparation of Aprepitant nanoparticles (efficient drug for coping with the effects of cancer treatment) by rapid expansion of supercritical solution with solid cosolvent (RESS-SC). J. Supercrit. Fluids 140, 72–84 (2018).
4. Subramaniam, B., Rajewski, R. A. & Snavely, K. Pharmaceutical processing with supercritical carbon dioxide. J. Pharm. Sci. 86, 885–890 (1997).
5. Razmimanesh, F., Sodeifian, G. & Sajadian, S. A. An investigation into Sunitinib malate nanoparticle production by US-RESOLV method: Effect of type of polymer on dissolution rate and particle size distribution. J. Supercrit. Fluids 170, 105163 (2021).
Cited by
34 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献