Direct pixel to pixel principal strain mapping from tagging MRI using end to end deep convolutional neural network (DeepStrain)

Author:

Abd-Elmoniem Khaled Z.,Yassine Inas A.,Metwalli Nader S.,Hamimi Ahmed,Ouwerkerk Ronald,Matta Jatin R.,Wessel Mia,Solomon Michael A.,Elinoff Jason M.,Ghanem Ahmed M.,Gharib Ahmed M.

Abstract

AbstractRegional soft tissue mechanical strain offers crucial insights into tissue's mechanical function and vital indicators for different related disorders. Tagging magnetic resonance imaging (tMRI) has been the standard method for assessing the mechanical characteristics of organs such as the heart, the liver, and the brain. However, constructing accurate artifact-free pixelwise strain maps at the native resolution of the tagged images has for decades been a challenging unsolved task. In this work, we developed an end-to-end deep-learning framework for pixel-to-pixel mapping of the two-dimensional Eulerian principal strains $$\varvec{{\varepsilon }}_{\boldsymbol{p1}}$$ ε p 1 and $$\varvec{{\varepsilon }}_{\boldsymbol{p2}}$$ ε p 2 directly from 1-1 spatial modulation of magnetization (SPAMM) tMRI at native image resolution using convolutional neural network (CNN). Four different deep learning conditional generative adversarial network (cGAN) approaches were examined. Validations were performed using Monte Carlo computational model simulations, and in-vivo datasets, and compared to the harmonic phase (HARP) method, a conventional and validated method for tMRI analysis, with six different filter settings. Principal strain maps of Monte Carlo tMRI simulations with various anatomical, functional, and imaging parameters demonstrate artifact-free solid agreements with the corresponding ground-truth maps. Correlations with the ground-truth strain maps were R = 0.90 and 0.92 for the best-proposed cGAN approach compared to R = 0.12 and 0.73 for the best HARP method for $$\varvec{{\varepsilon }}_{\boldsymbol{p1}}$$ ε p 1 and $$\varvec{{\varepsilon }}_{\boldsymbol{p2}}$$ ε p 2 , respectively. The proposed cGAN approach's error was substantially lower than the error in the best HARP method at all strain ranges. In-vivo results are presented for both healthy subjects and patients with cardiac conditions (Pulmonary Hypertension). Strain maps, obtained directly from their corresponding tagged MR images, depict for the first time anatomical, functional, and temporal details at pixelwise native high resolution with unprecedented clarity. This work demonstrates the feasibility of using the deep learning cGAN for direct myocardial and liver Eulerian strain mapping from tMRI at native image resolution with minimal artifacts.

Funder

National Institutes of Health (NIH), National Institute of Diabetes and Digestive and Kidney Diseases

Science and Technology Development Fund

NIH Clinical Center

National Institutes of Health

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3