Point-of-care AI-enhanced novice echocardiography for screening heart failure (PANES-HF)

Author:

Huang Weiting,Koh Tracy,Tromp Jasper,Chandramouli Chanchal,Ewe See Hooi,Ng Choon Ta,Lee Audry Shan Yin,Teo Louis Loon Yee,Hummel Yoran,Huang Feiqiong,Lam Carolyn Su Ping

Abstract

AbstractThe increasing prevalence of heart failure (HF) in ageing populations drives demand for echocardiography (echo). There is a worldwide shortage of trained sonographers and long waiting times for expert echo. We hypothesised that artificial intelligence (AI)-enhanced point-of-care echo can enable HF screening by novices. The primary endpoint was the accuracy of AI-enhanced novice pathway in detecting reduced LV ejection fraction (LVEF) < 50%. Symptomatic patients with suspected HF (N = 100, mean age 61 ± 15 years, 56% men) were prospectively recruited. Novices with no prior echo experience underwent 2-weeks’ training to acquire echo images with AI guidance using the EchoNous Kosmos handheld echo, with AI-automated reporting by Us2.ai (AI-enhanced novice pathway). All patients also had standard echo by trained sonographers interpreted by cardiologists (reference standard). LVEF < 50% by reference standard was present in 27 patients. AI-enhanced novice pathway yielded interpretable results in 96 patients and took a mean of 12 min 51 s per study. The area under the curve (AUC) of the AI novice pathway was 0.880 (95% CI 0.802, 0.958). The sensitivity, specificity, positive predictive and negative predictive values of the AI-enhanced novice pathway in detecting LVEF < 50% were 84.6%, 91.4%, 78.5% and 94.1% respectively. The median absolute deviation of the AI-novice pathway LVEF from the reference standard LVEF was 6.03%. AI-enhanced novice pathway holds potential to task shift echo beyond tertiary centres and improve the HF diagnostic workflow.

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3