Study on the characteristics of increased mechanical stiffness according to changes in LCP shape to reinforce clavicle fractures

Author:

Kim Soo Min,Kim Seong-tak,Han Dong-woon,Kim Dae-Geun

Abstract

AbstractThe clavicle has various anatomic shapes unique to each individual. Additionally, with the increase in high-energy traumas such as sports injuries and traffic accidents, the patterns of fractures become complex and complicated. Thus, there is a need for a variety of shapes of locking compression plates (LCP) to accommodate different types of fractures and facilitate quicker rehabilitation. The aim of this study is to present different types of LCP that secure fracture fragments and distribute stress evenly, in comparison to typical anatomical LCPs, for reinforcing clavicle fractures. Three models were compared in this study: the typical shape, the center hole removed shape, and the double-curved wing shape. The DICOM (Digital Imaging and Communications in Medicine) file obtained from the computed tomography scan of the patient’s clavicle was used to extract the three-dimensional (3D) clavicle structure. Finite element analysis (FEA) simulation was employed to analyze the structural changes of the LCP under external forces. A reinforced jig was used to apply the same type of external force to each LCP, and an experiment was conducted to analyze the mechanical impact of the LCP’s structural characteristics. When comparing the stress values at the fracture zone point, resulting from the FEA simulation with applied bending forces, it was calculated that the stress dispersion effect was approximately ten times greater when transitioning from a typical LCP shape to a double-curved partial wing structure. Moreover, the ultimate stress increased 3.33 times, from 241.322 to 804.057 N, as the LCP design changed under cantilever bending conditions. This double-curved wing LCP design reduces stress concentration at the fracture site and minimizes stress in the fracture area when subjected to cantilever bending forces. Consequently, this newly designed LCP has the potential to decrease complications related to the plate and accelerate rehabilitation protocols.

Funder

The Soonchunhyang University Research Fund

Ppuri Technology based Advancement Support Program

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3