Author:
Yuan XiaoHua,Dang Qun,Li Xue Lan
Abstract
AbstractTo analyse the genetic aetiology of a child with oculocutaneous albinism and to explore the effects of two mutation sites on the function of the OCA2 protein at the mRNA and protein levels via the use of recombinant carriers in vitro. Whole-exome sequencing (WES) and Sanger sequencing were used to analyse the pathogenic genes of the child and validate the mutations in the parents. pEGFP and phage vectors carrying wild-type and mutant OCA2 were constructed using the coding DNA sequence (CDS) of the whole gene-synthesized OCA2 as a template and transfected into HEK293T cells, after which expression analysis was performed. The child in this study was born with white skin, hair, eyelashes, and eyebrows and exhibited nystagmus. Genetic analysis indicated that the child carried two heterozygous mutations: c.1079C > T (p.Ser360Phe) of maternal origin and c.1095_1103delAGCACTGGC (p.Ala366_Ala368del) of paternal origin, conforming to an autosomal recessive inheritance pattern. In vitro analysis showed that the expression of the c.1079C > T (p.Ser360Phe) mutant did not significantly change at the mRNA level but did increase at the protein level, suggesting that the mutation may lead to enhanced protein stability, and the c.1095_1103delAGCACTGGC (p.Ala366_Ala368del) mutation resulted in the loss of three amino acids in exon 10, producing a truncated protein. In vitro expression analysis also revealed that the expression of the mutant gene was significantly downregulated at both the mRNA and protein levels, suggesting that the mutation can simultaneously produce truncated proteins and lead to protein degradation. This case study enriches the phenotypic spectrum of OCA2 gene disease. In vitro expression analysis confirmed that both mutations affect protein expression, providing a theoretical basis for analysing the pathogenicity of these two mutations.
Funder
Shaanxi Natural Science Basic research Program
International Science and Technology Cooperation Program of Shanxi Province
Publisher
Springer Science and Business Media LLC