Optimal control strategies for toxoplasmosis disease transmission dynamics via harmonic mean-type incident rate

Author:

Khan Usman,Ali Farhad,Alqasem Ohud A.,Elwahab Maysaa E. A.,Khan Ilyas,Rahimzai Ariana Abdul

Abstract

AbstractToxoplasma infection in humans is considered due to direct contact with infected cats. Toxoplasma infection (an endemic disease) has the potential to affect various organs and systems (brain, eyes, heart, lungs, liver, and lymph nodes). Bilinear incidence rate and constant population (birth rate is equal to death rate) are used in the literature to explain the dynamics of Toxoplasmosis disease transmission in humans and cats. The goal of this study is to consider the mathematical model of Toxoplasma disease with harmonic mean type incident rate and also consider that the population of humans and cats is not equal (birth rate and the death rate are not equal). In examining Toxoplasma transmission dynamics in humans and cats, harmonic mean incidence rates are better than bilinear incidence rates. The disease dynamics are first schematically illustrated, and then the law of mass action is applied to obtain nonlinear ordinary differential equations (ODEs). Analysis of the boundedness, positivity, and equilibrium points of the system has been analyzed. The reproduction number is calculated using the next-generation matrix technique. The stability of disease-free and endemic equilibrium are analyzed. Sensitivity analysis is also done for reproduction number. Numerical simulation shows that the infection is spread in the population when the contact rate $$\beta_{h}$$ β h and $$\beta_{c}$$ β c increases while the infection is reduced when the recovery rate $$\delta_{h}$$ δ h increases. This study investigates the impact of various optimal control strategies, such as vaccinations for the control of disease and the awareness of disease awareness, on the management of disease.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3