Spatio-temporal evolution characteristics analysis and optimization prediction of urban green infrastructure: a case study of Beijing, China

Author:

Ma Yin,Zheng Xinqi,Liu Menglan,Liu Dongya,Ai Gang,Chen Xueye

Abstract

AbstractThe reasonable layout of green infrastructure is conducive to the low-carbon, livable and high-quality sustainable development of cities. The framework of spatio-temporal evolution characteristics and prediction analysis of Urban Green Infrastructure (UGI) was constructed by integrating morphological spatial pattern analysis (MSPA) and CA-Markov in the study. We analyzed the spatio-temporal evolution characteristics of UGI in Beijing from 1990 to 2019, predicted its future change trend in 2030, and put forward the optimization scheme for the ecological network of UGI. The area change of UGI presented a "V" shape from 1990 to 2019 in Beijing, and the turning point was around 2009. Its spatial distribution revealed a significant heterogeneity. The comprehensive change rate index showed a "rising and then falling" trend from 1990 to 2019. Core with an area of over 1000 km2 had inclined "C" shape, connecting the north, west and south of the study area. Among the three prediction scenarios for 2030, the area of UGI under the ecological conservation priority scenario is the largest, accounting for 86.35% of the total area. The area of UGI under the economic development priority scenario is the smallest, accounting for 76.85%. The optimization of zoning and road network are effective measures to improve the connectivity of UGI in Beijing. This study is beneficial to extend the research ideas of UGI and promote sustainable urban development.

Funder

National Natural Science Foundation of China

Open Fund of Key Laboratory of Urban Land Resources Monitoring and Simulation, Ministry of Natural Resources

Fundamental Research Funds for the Central Universities

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3