Critical contribution of moisture to the air quality deterioration in a warm and humid weather

Author:

Choi Woosuk,Ho Chang-Hoi,Kim Ka-Young

Abstract

AbstractThe deterioration of air quality that threatens human health is recognized as focal compound hazard. Here, decisive thermodynamic conditions for activation of secondary aerosol formation have been investigated focused on Korea. In a dry environment with relative humidity < 60%, gas phase reaction to form fine particles depended largely on surface temperature. In a wet environment (relative humidity ≥ 60%), however, aqueous phase reaction of secondary inorganic aerosols, which are sulfate, nitrate, and ammonium, accounting for 67% of the total aerosol mass, was more activated. Thus, humidity is as important as temperature in the secondary production of aerosol; air quality often worsened when a low-pressure system was predominant over the Korean Peninsula. It is rather different from the general synoptic conditions of high concentrations of particulate matters characterized by high pressure and atmospheric stagnation. This study suggests additional favorable condition and responsible mechanism of air quality hazards that may be frequent in future.

Funder

National Research Foundation of Korea

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3