Cross-linked multifunctional binder in situ tuning solid electrolyte interface for silicon anodes in lithium ion batteries

Author:

Lou Xiaofei,Zhang Yuanyuan,Zhao Li,Zhang Teng,Zhang Hui

Abstract

AbstractSilicon is considered as the most promising anode material for high performance lithium-ion batteries due to its high theoretical specific capacity and low working potential. However, severe volume expansion problems existing during the process of (de)intercalation which seriously hinders its commercial progress. Binder can firmly adhere silicon and conductive agent to the current collector to maintain the integrity of the electrode structure, thereby effectively alleviating the silicon volume expansion and realizing lithium-ion batteries with high electrochemical performance. In this paper, citric acid (CA) and carboxymethyl cellulose (CMC) are adopted to construct a covalently crosslinked CA@CMC binder by an easy-to-scale-up esterification treatment. The Si@CA@CMC-1 electrode material shows an impressive initial coulombic efficiency (ICE) at 82.1% and after 510 cycles at 0.5 A/g, its specific capacity is still higher than commercial graphite. The excellent electrochemical performance of Si@CA@CMC-1 can be attributed to the ester bonds formed among CA@CMC binder and silicon particles. Importantly, by decoupling in situ EIS combining XPS at different cycles, it can be further proved that the CA@CMC binder can tune the component of SEI which provide a new-route to optimize the performance of silicon.

Funder

Natural Science Foundation of Ningxia Province

National Natural Science Foundation of China

Key Research and Development Program of Ningxia

Fundamental Research Funds for the Central Universities, North Minzu University

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3