NISNet3D: three-dimensional nuclear synthesis and instance segmentation for fluorescence microscopy images

Author:

Wu Liming,Chen Alain,Salama Paul,Winfree Seth,Dunn Kenneth W.,Delp Edward J.

Abstract

AbstractThe primary step in tissue cytometry is the automated distinction of individual cells (segmentation). Since cell borders are seldom labeled, cells are generally segmented by their nuclei. While tools have been developed for segmenting nuclei in two dimensions, segmentation of nuclei in three-dimensional volumes remains a challenging task. The lack of effective methods for three-dimensional segmentation represents a bottleneck in the realization of the potential of tissue cytometry, particularly as methods of tissue clearing present the opportunity to characterize entire organs. Methods based on deep learning have shown enormous promise, but their implementation is hampered by the need for large amounts of manually annotated training data. In this paper, we describe 3D Nuclei Instance Segmentation Network (NISNet3D) that directly segments 3D volumes through the use of a modified 3D U-Net, 3D marker-controlled watershed transform, and a nuclei instance segmentation system for separating touching nuclei. NISNet3D is unique in that it provides accurate segmentation of even challenging image volumes using a network trained on large amounts of synthetic nuclei derived from relatively few annotated volumes, or on synthetic data obtained without annotated volumes. We present a quantitative comparison of results obtained from NISNet3D with results obtained from a variety of existing nuclei segmentation techniques. We also examine the performance of the methods when no ground truth is available and only synthetic volumes were used for training.

Funder

National Institutes of Health

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3