Phase estimation of definite photon number states by using quantum circuits

Author:

Najafi Peyman,Naeimi Ghasem,Saeidian Shahpoor

Abstract

AbstractWe propose a method to map the conventional optical interferometry setup into quantum circuits. The unknown phase shift inside a Mach–Zehnder interferometer in the presence of photon loss is estimated by simulating the quantum circuits. For this aim, we use the Bayesian approach in which the likelihood functions are needed, and they are obtained by simulating the appropriate quantum circuits. The precision of four different definite photon-number states of light, which all possess six photons, is compared. The measurement scheme that we have considered is counting the number of photons detected after the final beam splitter of the interferometer, and photon loss is modeled by using fictitious beam splitters in the arms of the interferometer. Our results indicate that three of the four definite photon-number states considered can have better precision than the standard interferometry limit whenever the photon loss rate is in a specific range. In addition, the Fisher information for the four definite photon-number states in the setup is also estimated to check the optimality of the chosen measurement scheme.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3