High-efficiency retention of ultrafine aerosols by electrospun nanofibers

Author:

Salkovskiy Yury,Fadeev Aleksandr

Abstract

AbstractThe versatility of nanofibrous polymeric materials makes them attractive for developing respiratory protective equipment. Ultrafine nanofibers effectively trap the most penetrating aerosols and exhibit consistent performance compared to conventional electret filters. Advanced nanofiber manufacturing technologies such as electrospinning can functionalize filter materials, enhancing them with unique antibacterial, catalytic, sensory, and other properties. Much of the current research in nanofibrous air filtration focuses on using nanofibers for lightweight personal protective equipment such as N95 respirators, but their use for higher levels of respiratory protection required for chemical, biological, radiological, and nuclear (CBRN) protection has not yet been comprehensively explored. In this study, we tested the hypothesis that electrospun filters could provide the particle filtration efficiency and breathing resistance required by the National Institute for Occupational Safety and Health Standard for CBRN air-purifying respirators. Our manufactured nanofibrous filters demonstrated submicron aerosol retention efficiency of > 99.999999%, which is four orders of magnitude better than the requirements of the CBRN standard. They also had a breathing resistance of ~ 26 mmH2O, which is more than twofold lower than the maximum allowable limit. Although the filter material from the gas mask cartridge currently in service with the U.S. military demonstrated a higher quality factor than electrospun filters, the comparative analysis of filter morphology suggested ways of improving nanofibrous filter performance by tuning nanofiber diameter distribution.

Funder

Nebraska Research Initiative

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3