Global assessment of coralline algae mineralogy points to high vulnerability of Southwestern Atlantic reefs and rhodolith beds to ocean acidification

Author:

de Carvalho Rodrigo Tomazetto,Rocha Gustavo Miranda,Karez Claudia Santiago,da Gama Bahia Ricardo,Pereira Renato Crespo,Bastos Alex Cardoso,Salgado Leonardo Tavares

Abstract

AbstractCoralline algae constitute one of the main groups of highly vulnerable calcified benthic organisms to ocean acidification. Although damaging effects of seawater acidification on the coralline algae skeleton have been widely demonstrated, the susceptibility to dissolution varies according to the Mg2+ in the calcite lattice. Even though the Southwest Atlantic Ocean exhibits the world’s largest rhodolith beds, which occupies 20,902 km2, there is no information regarding the coralline algae species mineralogy in this area. Here, we provide mineralogical data of twenty-four coralline algae species, examine the similarity in taxonomic groups, spatial occurrence and the vulnerability of these algae to seawater acidification. Mineralogy revealed that coralline algae skeletons were mainly composed of high-Mg calcite (> 70%) with minor presence of aragonite (< 30%) and dolomite (< 3%). There were no similarities between the skeletal mineralogy of taxonomic groups and sampling regions. Remarkably, the mean Mg-substitution of encrusting coralline algae from the Brazilian Shelf was 46.3% higher than global average. Because of the higher mean Mg-substitution in calcite compared with worldwide coralline algae, these algae from Southwest Atlantic Ocean would be highly susceptible to dissolution caused by the expected near-future ocean acidification and will compromise CaCO3 net production across the Brazilian Shelf.

Funder

Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Agência Nacional do Petróleo, Gás Natural e Biocombustíveis

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3