Experimental study on the significance of pressure relief effect and crack extension law under uniaxial compression of rock-like materials containing drill holes

Author:

Tai Lianhai,Li Chong,Hu Yin,Yu Xiaoxiao,Xu Zhijun,Zhang Xiaowu,Chai Shiguang,Zhang Peng,Lu Shihui

Abstract

AbstractThe drilling pressure relief technology is an effective way to reduce the accumulation of elastic energy in the tunnel envelope, which can reduce the risk of regional ground pressure occurrence. However, there is a lack of theoretical guidance on which drilling parameter has the greatest degree of influence on the effectiveness of pressure relief. The uniaxial compression tests were conducted to study the relationships between drilling parameters (the diameter, depth, and spacing) and the mechanical properties and deformation modulus of specimens. The results show that: (1) The drilling diameter (DDR) and drilling depth (DDH) of single-hole specimens negatively correlate with the peak-failure strength and deformation modulus, while the drilling spacing (DS) of double-hole specimens positively correlates with the peak-failure strength and deformation modulus. It shows that the borehole diameter has a more significant effect on the decompression effect. (2) With the help of the Grey Relational Analysis, the factors affecting the peak-failure strength and deformation modulus of the drilled specimens were ranked in significance. From the largest to the smallest, they are DDR, followed by DDH and DS. (3) The role of the pressure relief mechanism is to transfer the high stress in the shallow part of the roadway to the deep part, reduce the peak strength of destruction and deformation modulus of the peripheral rock in the drilled section, so that the characteristics of the mechanical behavior of the rock are significantly weakened, and the range of the area of the drilled hole decompression is enlarged. During the loading of the borehole, the borehole stress field dominates in the early stage, and cracking starts near the borehole along the direction perpendicular to the direction of maximum principal stress (horizontal direction). In the later stage, the maximum principal stress field dominates and vertical cracks with large widths appear. During crack expansion, the plastic energy dissipation effect is enhanced and the deep impact conduction path is weakened, thus protecting the roadway. This study determined the significance of the pressure relief effect of different drilling parameters, which can guide reasonable modifications of drilling parameters in the field.

Funder

the National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3