Author:
De Arpan,Mohammad Hashem,Wang Yiren,Kubendran Rajkumar,Das Arindam K.,Anantram M. P.
Abstract
AbstractDeoxyribonucleic acid (DNA) has emerged as a promising building block for next-generation ultra-high density storage devices. Although DNA has high durability and extremely high density in nature, its potential as the basis of storage devices is currently hindered by limitations such as expensive and complex fabrication processes and time-consuming read–write operations. In this article, we propose the use of a DNA crossbar array architecture for an electrically readable read-only memory (DNA-ROM). While information can be ‘written’ error-free to a DNA-ROM array using appropriate sequence encodings its read accuracy can be affected by several factors such as array size, interconnect resistance, and Fermi energy deviations from HOMO levels of DNA strands employed in the crossbar. We study the impact of array size and interconnect resistance on the bit error rate of a DNA-ROM array through extensive Monte Carlo simulations. We have also analyzed the performance of our proposed DNA crossbar array for an image storage application, as a function of array size and interconnect resistance. While we expect that future advances in bioengineering and materials science will address some of the fabrication challenges associated with DNA crossbar arrays, we believe that the comprehensive body of results we present in this paper establishes the technical viability of DNA crossbar arrays as low power, high-density storage devices. Finally, our analysis of array performance vis-à-vis interconnect resistance should provide valuable insights into aspects of the fabrication process such as proper choice of interconnects necessary for ensuring high read accuracies.
Funder
National Science Foundation
Publisher
Springer Science and Business Media LLC
Reference49 articles.
1. Neiman, M. S. On the molecular memory systems and the directed mutations. Radiotekhnika 1, 8 (1965).
2. Machines Smarter Than Men? Interview with Dr. Norbert Wiener, Noted Scientist - Joshua Lederberg - Profiles in Science. https://profiles.nlm.nih.gov/spotlight/bb/catalog/nlm:nlmuid-101584906X7699-doc. Accessed Sep. 04, 2021.
3. Davis, J. Microvenus. Art J. 55(1), 70–74. https://doi.org/10.1080/00043249.1996.10791743 (1996).
4. Clelland, C. T., Risca, V. & Bancroft, C. Hiding messages in DNA microdots. Nature 399(6736), 533–534. https://doi.org/10.1038/21092 (1999).
5. Church, G. M., Gao, Y. & Kosuri, S. Next-generation digital information storage in DNA. Science (80) 337(6102), 1628. https://doi.org/10.1126/SCIENCE.1226355 (2012).