Author:
Wu Qinjuan,Li Xin,Long Menghong,Xie Xianfeng,Liu Qing
Abstract
AbstractHistone lysine lactylation (Kla) plays a vital role in the tumorigenesis of hepatocellular carcinoma (HCC). Hence, we focused on Kla-specific genes to select novel therapeutic targets. Differentially expressed Kla-specific genes (DEKlaGs) were identified from TCGA with the cut-off criteria |log2(FlodChange (FC))| > 2, p-value < 0.05, following investigating the prognostic value. The correlation between lactate accumulation and prognostic DEKlaGs expression was further investigated. On the other hand, we explored the roles of Kla activation in the immune microenvironment, immunotherapy, and drug resistance. We conducted gene set enrichment analysis (GSEA) to predict the pathways influenced by Kla. The predictive power of Cox model was further identified in ICGC and GEO databases. A total of 129 DEKlaGs were identified, and 32 molecules might be potential prognostic biomarkers. A Cox model including ARHGEF37, MTFR2, NR6A1, NT5DC2, OSBP2, RNASEH2A, SFN, and UNC119B was constructed, which suggested unfavorable overall survival in high-risk score group, and risk score could serve as an indicator for large tumor size, poor pathological grade and advanced stage. NR6A1, OSBP2 and UNC119B could inhibit NK cell as well as TIL cell infiltration, and impair Type-I and II IFN responses in HCC, thereby contributing to unsatisfactory prognosis and immunotherapy resistance. OSBP2 and UNC119B were identified to be related to chemotherapy resistance. GSEA showed that WNT, MTOR, MAPK and NOTCH signaling pathways were activated, indicating that these pathways might play a crucial role during the Kla process. On the other hand, we showed that NR6A1 and OSBP2 were overexpressed in GEO. OSBP2 and UNC119B contributed to poor survival and advanced stage in ICGC. In summary, histone Kla was related to HCC prognosis and might serve as an independent biomarker. NR6A1, OSBP2 and UNC119B were associated with the prognosis, immunotherapy, and chemotherapy resistance, suggesting that NR6A1, OSBP2 and UNC119B might be novel candidate therapeutic targets for HCC.
Publisher
Springer Science and Business Media LLC