Seasonal changes of prokaryotic microbial community structure in Zhangjiayan Reservoir and its response to environmental factors

Author:

Yu Xintao,Li Yong,Wu Yue,Gao Hui,Liu Wei,Liu Huan,Gong Sidan,Wu Honglian

Abstract

AbstractAs a typical sub-deep reservoir in the upper reaches of the Yangtze River in the southwest region, Zhangjiayan Reservoir is also an important source of drinking water. Exploring the role of microorganisms in the material cycle of water bodies is of great significance for preventing the exacerbation of eutrophication in the reservoir. In this study, water samples from the overlying water of five points in the reservoir were collected four times in spring (April), summer (July), autumn (November), and winter (January) of 2022–2023 using a gas-tight water sampler. Physicochemical factors were measured, and the microbial community structure was analyzed by high-throughput MiSeq sequencing of the V3–V4 hypervariable region of 16S rRNA gene in order to explore the relationship between physicochemical factors and microbial community structure and the dominant microbial populations that affect eutrophication of the reservoir. The following results were obtained through analysis. Among the 20 overlying water samples from Zhangjiayan Reservoir, a total of 66 phyla, 202 classes, 499 orders, 835 families, 1716 genera, and 27,904 ASVs of the bacterial domain were detected. The phyla Proteobacteria and Actinobacteria were dominant in the microbial community of the overlying water in Zhangjiayan Reservoir. At the genus level, hgcI_clade and Actinobacteria had the highest abundance and was the dominant population. The microbial community in the water of Zhangjiayan Reservoir has a high level of diversity. The diversity index ranked by numerical order was winter > autumn > summer > spring. Significant differences were found in the composition and structure of the microbial community between the spring/summer and autumn/winter seasons (p < 0.05). Total phosphorus, dissolved total phosphorus, soluble reactive phosphorus, and dissolved oxygen have a significant impact on the composition and structure of the microbial community (p < 0.01). The bacterial community in the overlying water of Zhangjiayan Reservoir showed a mainly positive correlation. Sphingomonas, Brevundimonas, and Blastomonas were the central populations of the bacterial community in the overlying water of Zhangjiayan Reservoir. This study indicates that environmental factors, such as phosphorus and other nutrients, have a significant impact on the formation of the microbial community structure in different seasons. Sphingomonas, Brevundimonas, and Blastomonas are key populations that may have a significant impact on eutrophication in Zhangjiayan Reservoir.

Funder

the Key Laboratory Open Project of Southwest Jiaotong University

Publisher

Springer Science and Business Media LLC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3