Data-fusion for in-situ monitoring and molten state identification during LPBF of NiCoCr medium-entropy alloy

Author:

Li Hong,Yan Shaohua,Fu Yu

Abstract

AbstractLaser powder bed fusion (LPBF) is an additive manufacturing technology with high practical value. In order to improve the quality of the fabricated parts, process monitoring has become a crucial solution, offering the potential to ensure manufacturing stability and repeatability. However, a cardinal challenge involves discerning a precise correlation between process characteristics and potential defects. This paper elucidates the integration of an off-axis vision monitoring mechanism via a high-speed camera focused on capturing the single-track melting phenomenon. An innovative image processing method was devised to segment the plume and spatters, while Kalman filter was employed for multi-object tracking of the spatters. The features of both the plume and spatters were extracted, and their relationship with molten states was investigated. Finally, the PSO-XGBoost algorithm was utilized to identify five molten states, achieving an accuracy of 92.16%. The novelty of this approach resides in its unique combination of plume characteristics, spatter features, and computationally efficient machine learning models, which collectively address the challenge of limited field of view prevalent in real production scenarios, thereby enhancing process monitoring efficacy. Relative to existing methodologies, the proposed PSO-XGBoost approach offers heightened accuracy, convenience, and appropriateness for the monitoring of the LPBF process. This work provides an effective and novel approach to monitor the LPBF process and evaluate the part fabrication quality for complex and changeable working conditions.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3