Application of neural networks and neuro-fuzzy models in construction scheduling

Author:

Obianyo Jude Iloabuchi,Udeala Richard Chinenye,Alaneme George UwadiegwuORCID

Abstract

AbstractConstruction scheduling is a complex process that involves a large number of variables, making it difficult to develop accurate and efficient schedules. Traditional scheduling techniques rely on manual analysis and intuition, which are prone to errors and often fail to account for all the variables involved. This results in project delays, cost overruns, and poor project performance. Artificial intelligence models have shown promise in improving construction scheduling accuracy by incorporating historical data, site-specific conditions, and other variables that traditional scheduling methods may not consider. In this research study, application of soft-computing techniques to evaluate construction schedule and control of project activities in order to achieve optimal performance in execution of building projects were carried out. Artificial neural network and neuro-fuzzy models were developed using data extracted from a residential two-storey reinforced concrete framed-structure construction schedule and project execution documents. The evaluation of project performance indicators in earned value analysis from 0 to 100% progress at 5% increment with a total of seventeen tasks were carried out using Microsoft Project software and data obtained from the computation were utilized for model development. Using input–output and curve-fitting (nftool) function in MATLAB, a 6-10-1 two-layer feed-forward network with tansig activation-function (AF) for the hidden neurons and linear AF output neurons was generated with Levenberg–Marquardt (Trainlm) training algorithm. Similarly, with the aid of ANFIS toolbox in MATLAB software, the training, testing and validation of the ANFIS model were carried out using hybrid optimization learning algorithm at 100 epochs and the Gaussian-membership-function (gaussmf). Loss-function parameters namely MAE, RMSE and R-values were taken as the performance evaluation criteria of the developed models. The generated statistical results indicates no significant difference between model-results and experimental values with MAE, RMSE, R2 of 1.9815, 2.256 and 99.9% respectively for ANFIS-model and MAE, RMSE, R2 of 2.146, 2.4095 and 99.998% respectively for the ANN-model. The model performance indicated that the ANFIS-model outclassed the ANN-model with their results satisfactory to deal with complex relationships between the model variables to produce accurate target response. The findings from this research study will improve the accuracy of construction scheduling, resulting in improved project performance and reduced costs.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3