Inhibitory synaptic transmission is impaired at higher extracellular Ca2+ concentrations in Scn1a+/− mouse model of Dravet syndrome

Author:

Uchino KouyaORCID,Kawano HiroyukiORCID,Tanaka YasuyoshiORCID,Adaniya Yuna,Asahara Ai,Deshimaru Masanobu,Kubota Kaori,Watanabe Takuya,Katsurabayashi ShutaroORCID,Iwasaki Katsunori,Hirose ShinichiORCID

Abstract

AbstractDravet syndrome (DS) is an intractable form of childhood epilepsy that occurs in infancy. More than 80% of all patients have a heterozygous abnormality in the SCN1A gene, which encodes a subunit of Na+ channels in the brain. However, the detailed pathogenesis of DS remains unclear. This study investigated the synaptic pathogenesis of this disease in terms of excitatory/inhibitory balance using a mouse model of DS. We show that excitatory postsynaptic currents were similar between Scn1a knock-in neurons (Scn1a+/− neurons) and wild-type neurons, but inhibitory postsynaptic currents were significantly lower in Scn1a+/− neurons. Moreover, both the vesicular release probability and the number of inhibitory synapses were significantly lower in Scn1a+/− neurons compared with wild-type neurons. There was no proportional increase in inhibitory postsynaptic current amplitude in response to increased extracellular Ca2+ concentrations. Our study revealed that the number of inhibitory synapses is significantly reduced in Scn1a+/− neurons, while the sensitivity of inhibitory synapses to extracellular Ca2+ concentrations is markedly increased. These data suggest that Ca2+ tethering in inhibitory nerve terminals may be disturbed following the synaptic burst, likely leading to epileptic symptoms.

Funder

Japan Society for the Promotion of Science

the Science Research Promotion Fund and The Fukuoka University Fund

Japan Agency for Medical Research and Development

Program for the Strategic Research Foundation at Private Universities

Grant-in-Aid for the Research on Measures for Intractable Diseases

Center for Clinical and Translational Research of Kyushu University Hospital

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3