Motor imagery classification using sparse representations: an exploratory study

Author:

de Menezes José Antonio Alves,Gomes Juliana Carneiro,de Carvalho Hazin Vitor,Dantas Júlio César Sousa,Rodrigues Marcelo Cairrão Araújo,dos Santos Wellington Pinheiro

Abstract

AbstractThe non-stationary nature of the EEG signal poses challenges for the classification of motor imagery. sparse representation classification (SRC) appears as an alternative for classification of untrained conditions and, therefore, useful in motor imagery. Empirical mode decomposition (EMD) deals with signals of this nature and appears at the rear of the classification, supporting the generation of features. In this work we evaluate the combination of these methods in a multiclass classification problem, comparing them with a conventional method in order to determine if their performance is regular. For comparison with SRC we use multilayer perceptron (MLP). We also evaluated a hybrid approach for classification of sparse representations with MLP (RSMLP). For comparison with EMD we used filtering by frequency bands. Feature selection methods were used to select the most significant ones, specifically Random Forest and Particle Swarm Optimization. Finally, we used data augmentation to get a more voluminous base. Regarding the first dataset, we observed that the classifiers that use sparse representation have results equivalent to each other, but they outperform the conventional MLP model. SRC and SRMLP achieve an average accuracy of $$75.95\%$$ 75.95 % and $$82.51\%$$ 82.51 % respectively while the MLP is $$72.38\%$$ 72.38 % , representing a gain between $$4.93\%$$ 4.93 % and $$14\%$$ 14 % . The use of EMD in relation to other feature processing techniques is not superior. However, EMD does not influence negatively, there is an opportunity for improvement. Finally, the use of data augmentation proved to be important to obtain relevant results. In the second dataset, we did not observe the same results. Models based on sparse representation (SRC, SRMLP, etc.) have on average a performance close to other conventional models, but without surpassing them. The best sparse models achieve an average accuracy of $$95.43\%$$ 95.43 % among the subjects in the base, while other model reach $$98.33\%$$ 98.33 % . The improvement of self-adaptive mechanisms that respond efficiently to the user’s context is a good way to achieve improvements in motor imagery applications. However, other scenarios should be investigated, since the advantage of these methods was not proven in all datasets studied. There is still room for improvement, such as optimizing the dictionary of sparse representation in the context of motor imagery. Investing efforts in synthetically increasing the training base has also proved important to reduce the costs of this group of applications.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3