Regulatory T cells in psoriatic arthritis: an IL-17A-producing, Foxp3intCD161 + RORγt + ICOS + phenotype, that associates with the presence of ADAMTSL5 autoantibodies

Author:

Pouw Juliëtte N.,Olde Nordkamp Michel A. M.,van Kempen Tessa,Concepcion Arno N.,van Laar Jacob M.,van Wijk Femke,Spierings Julia,Leijten Emmerik F. A.,Boes Marianne

Abstract

AbstractIn psoriatic arthritis (PsA), predisposing class I HLA alleles, the presence of synovial clonally proliferated CD8 + T cells and autoantibodies all point towards the loss of immune tolerance. However, the key mechanisms that lead to immune dysregulation are not fully understood. In other types of inflammatory arthritis, T regulatory cell (Treg) dysfunction and plasticity at sites of inflammation were suggested to negatively affect peripheral tolerance. We here addressed if Treg variances associate with psoriatic disease. We collected clinical data, sera and peripheral blood mononuclear cells from 13 healthy controls, 21 psoriasis and 21 PsA patients. In addition, we obtained synovial fluid mononuclear cells from 6 PsA patients. We studied characteristics of CD4 + CD25 + CD127loFoxp3 + Tregs by flow cytometry and used ELISA to quantify antibodies against ADAMTSL5, a recently discovered autoantigen in psoriatic disease. In comparison with their circulating counterparts, Tregs from inflamed joints express increased levels of ICOS, CTLA-4 and TIGIT. Furthermore, synovial fluid-derived Tregs have a distinct phenotype, characterized by IL-17A production and upregulation of CD161 and RORγt. We identified a subset of Tregs with intermediate Foxp3 expression as the major cytokine producer. Furthermore, ICOS + Tregs associate with PsA disease activity as measured by PASDAS. Lastly, we observed that presence of the Foxp3int Tregs associates with an increased abundance of anti-ADAMTSL5 autoantibodies. Tregs derived from the inflammatory environment of inflamed PsA joints exhibit a distinct phenotype, which associates with loss of peripheral immune tolerance in psoriatic disease.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3