On the importance of structural equivalence in temporal networks for epidemic forecasting

Author:

Kister Pauline,Tonetto Leonardo

Abstract

AbstractUnderstanding how a disease spreads in a population is a first step to preparing for future epidemics, and machine learning models are a useful tool to analyze the spreading process of infectious diseases. For effective predictions of these spreading processes, node embeddings are used to encode networks based on the similarity between nodes into feature vectors, i.e., higher dimensional representations of human contacts. In this work, we evaluated the impact of homophily and structural equivalence on embedding for disease spread prediction by testing them on real world temporal human contact networks. Our results show that structural equivalence is a useful indicator for the infection status of a person. Embeddings that are balanced towards the preservation of structural equivalence performed better than those that focus on the preservation of homophily, with an average improvement of 0.1042 in the f1-score (95% CI 0.051 to 0.157). This indicates that structurally equivalent nodes behave similarly during an epidemic (e.g., expected time of a disease onset). This observation could greatly improve predictions of future epidemics where only partial information about contacts is known, thereby helping determine the risk of infection for different groups in the population.

Funder

Technische Universität München

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3