A structural approach to detecting opinion leaders in Twitter by random matrix theory

Author:

Mohammadi Saeedeh,Moradi Parham,Trufanov Andrey,Jafari G. Reza

Abstract

AbstractThis paper presents a novel approach leveraging Random Matrix Theory (RMT) to identify influential users and uncover the underlying dynamics within social media discourse networks. Focusing on the retweet network associated with the 2021 Iranian presidential election, our study reveals intriguing findings. RMT analysis unveils that power dynamics within both poles of the network do not conform to a “one-to-many” pattern, highlighting a select group of users wielding significant influence within their clusters and across the entire network. By harnessing Random Matrix Theory (RMT) and complementary methodologies, we gain a profound understanding of the network’s structure and, in turn, unveil the intricate dynamics of the discussion extending beyond mere structural analysis. In sum, our findings underscore the potential of RMT as a tool to gain deeper insights into network dynamics, particularly within popular discussions. This approach holds promise for investigating opinion leaders in diverse political and non-political dialogues.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Reference42 articles.

1. Kelly Garrett, R. Echo chambers online?: Politically motivated selective exposure among internet news users. J. Comput.-Mediat. Commun. 14(2), 265–285 (2009).

2. Emily, K. & von Sikorski, C. The role of media in political polarization| the complex relationship between media and political polarization: Understanding how the media can affectively (de) polarize citizens-introduction. Int. J. Commun. 17, 16 (2023).

3. Bruno, M., Lambiotte, R. & Saracco, F. Brexit and bots: Characterizing the behaviour of automated accounts on Twitter during the UK election. EPJ Data Sci. 11(1), 17 (2022).

4. Bessi, A. & Ferrara, E. Social bots distort the 2016 US presidential election online discussion. First Monday 21(11-7) (2016).

5. D Arnaudo. Computational propaganda in Brazil: Social bots during elections.(2017).

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3