Biochemical changes and macrophage polarization of a silane-based endodontic irrigant in an animal model

Author:

Daood Umer,Ilyas Muhammad Sharjeel,Ashraf Mariam,Akbar Munazza,Bapat Ranjeet Ajit,Khan Abdul Samad,Pichika Mallikarjuna Rao,Parolia Abhishek,Seow Liang Lin,Khoo Suan Phaik,Yiu Cynthia

Abstract

AbstractSilane-based/fully hydrolyzed, endodontic irrigant exhibiting antimicrobial properties, is prepared, and is hypothesized to control macrophage polarization for tissue repair. Albino wistar rats were injected with 0.1 ml root canal irrigant, and bone marrow cells procured. Cellular mitochondria were stained with MitoTracker green along with Transmission Electron Microscopy (TEM) performed for macrophage extracellular vesicle. Bone marrow stromal cells (BMSCs) were induced for M1 and M2 polarization and Raman spectroscopy with scratch assay performed. Cell counting was used to measure cytotoxicity, and fluorescence microscopy performed for CD163. Scanning Electron Microscopy (SEM) was used to investigate interaction of irrigants with Enterococcus faecalis. K21 specimens exhibited reduction in epithelium thickness and more mitochondrial mass. EVs showed differences between all groups with decrease and increase in IL-6 and IL-10 respectively. 0.5%k21 enhanced wound healing with more fibroblastic growth inside scratch analysis along with increased inflammation-related genes (ICAM-1, CXCL10, CXCL11, VCAM-1, CCL2, and CXCL8; tissue remodelling-related genes, collagen 1, EGFR and TIMP-2 in q-PCR analysis. Sharp bands at 1643 cm-1 existed in all with variable intensities. 0.5%k21 had a survival rate of BMSCs comparable to control group. Bacteria treated with 0.5%k21/1%k21, displayed damage. Antimicrobial and reparative efficacy of k21 disinfectant is a proof of concept for enhanced killing of bacteria across root dentin acquiring functional type M2 polarization for ethnopharmacological effects.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3