Author:
Hirakawa Yosuke,Yoshioka Kentaro,Kojima Kensuke,Yamashita Yasuho,Shibahara Takuma,Wada Takehiko,Nangaku Masaomi,Inagi Reiko
Abstract
AbstractDiabetic kidney disease is the main cause of end-stage renal disease worldwide. The prediction of the clinical course of patients with diabetic kidney disease remains difficult, despite the identification of potential biomarkers; therefore, novel biomarkers are needed to predict the progression of the disease. We conducted non-targeted metabolomics using plasma and urine of patients with diabetic kidney disease whose estimated glomerular filtration rate was between 30 and 60 mL/min/1.73 m2. We analyzed how the estimated glomerular filtration rate changed over time (up to 30 months) to detect rapid decliners of kidney function. Conventional logistic analysis suggested that only one metabolite, urinary 1-methylpyridin-1-ium (NMP), was a promising biomarker. We then applied a deep learning method to identify potential biomarkers and physiological parameters to predict the progression of diabetic kidney disease in an explainable manner. We narrowed down 3388 variables to 50 using the deep learning method and conducted two regression models, piecewise linear and handcrafted linear regression, both of which examined the utility of biomarker combinations. Our analysis, based on the deep learning method, identified systolic blood pressure and urinary albumin-to-creatinine ratio, six identified metabolites, and three unidentified metabolites including urinary NMP, as potential biomarkers. This research suggests that the machine learning method can detect potential biomarkers that could otherwise escape identification using the conventional statistical method.
Funder
Center of Innovation Science and Technology-based Radical Innovation and Entrepreneurship Program
Publisher
Springer Science and Business Media LLC
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献