Articular surface integrity assessed by ultrasound is associated with biological characteristics of articular cartilage in early-stage degeneration

Author:

Shi Wen,Kanamoto TakashiORCID,Aihara Masaharu,Oka Shiro,Kuroda Sanae,Nakai Tsuyoshi,Mazuka Takeo,Takenaka Keisuke,Sato Yuji,Tsukamoto Masahiro,Ebina Kosuke,Nakata Ken

Abstract

AbstractEarly diagnosis of articular cartilage damage and repeated evaluation of treatment efficacy are essential for osteoarthritis treatment. In this study, we established a simple ultrasound grading system for early degenerative articular cartilage and investigated its relationship with cartilage biological characteristics. The ultrasound grading system were based on surface integrity (S1a: continuous high-echo lines, S1b: discontinuous or weak high-echo lines, S2: surface irregular) and cartilage echogenicity (E1: with > 50%, E2: < 50% hypoechoic area of total cartilage layer) and verified by surface roughness (Ra; μm) and histological staining. Ra was lower in S1 than in S2, and the percentage of hypoechoic and safranin O-stained areas was positively correlated. Then we examined its relationship with histopathological evaluation (OARSI grade), gene expression, and protein production in responded to pro-inflammatory cytokine (IL-1ß) stimulation. OARSI grades were different among S grades. The superficial layer of S1 had higher expression of Collagen10, aggrecan, Sox9, and lower expression of Collagen1 and BMP2 than that of S2. S1 responded more pronouncedly to IL-1ß in IL-6, IL-8, and CCL2 production than S2. There was no difference among the E-grades. Taken together, our findings indicate that ultrasound assessment using surface integrity can reflect the biological characteristics of early degenerative articular cartilage.

Funder

Japan Society for the Promotion of Science

Japan Agency for Medical Research and Development: AMED

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3