Melanin distribution from the dermal–epidermal junction to the stratum corneum: non-invasive in vivo assessment by fluorescence and Raman microspectroscopy

Author:

Yakimov B. P.,Shirshin E. A.,Schleusener J.,Allenova A. S.,Fadeev V. V.,Darvin M. E.

Abstract

AbstractThe fate of melanin in the epidermis is of great interest due to its involvement in numerous physiological and pathological processes in the skin. Melanin localization can be assessed ex vivo and in vivo using its distinctive optical properties. Melanin exhibits a characteristic Raman spectrum band shape and discernible near-infrared excited (NIR) fluorescence. However, a detailed analysis of the capabilities of depth-resolved confocal Raman and fluorescence microspectroscopy in the evaluation of melanin distribution in the human skin is lacking. Here we demonstrate how the fraction of melanin at different depths in the human skin in vivo can be estimated from its Raman spectra (bands at 1,380 and 1,570 cm−1) using several procedures including a simple ratiometric approach, spectral decomposition and non-negative matrix factorization. The depth profiles of matrix factorization components specific to melanin, collagen and natural moisturizing factor provide information about their localization in the skin. The depth profile of the collagen-related matrix factorization component allows for precise determination of the dermal–epidermal junction, i.e. the epidermal thickness. Spectral features of fluorescence background originating from melanin were found to correlate with relative intensities of the melanin Raman bands. We also hypothesized that NIR fluorescence in the skin is not originated solely from melanin, and the possible impact of oxidized species should be taken into account. The ratio of melanin-related Raman bands at 1,380 and 1,570 cm−1 could be related to melanin molecular organization. The proposed combined analysis of the Raman scattering signal and NIR fluorescence could be a useful tool for rapid non-invasive in vivo diagnostics of melanin-related processes in the human skin.

Funder

Projekt DEAL

Russian Science Foundation

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3