Nanoscale flow cytometry reveals interpatient variability in HIV protease activity that correlates with viral infectivity and identifies drug-resistant viruses

Author:

Bonar Michał M.,Tabler Caroline O.,Haqqani Aiman A.,Lapointe Lauren E.,Galiatsos Jake A.,Joussef-Piña Samira,Quiñones-Mateu Miguel E.,Tilton John C.

Abstract

AbstractHIV encodes an aspartyl protease that is activated during, or shortly after, budding of viral particles from the surface of infected cells. Protease-mediated cleavage of viral polyproteins is essential to generating infectious viruses, a process known as ‘maturation’ that is the target of FDA-approved antiretroviral drugs. Most assays to monitor protease activity rely on bulk analysis of millions of viruses and obscure potential heterogeneity of protease activation within individual particles. In this study we used nanoscale flow cytometry in conjunction with an engineered FRET reporter called VIral ProteasE Reporter (VIPER) to investigate heterogeneity of protease activation in individual, patient-derived viruses. We demonstrate previously unappreciated interpatient variation in HIV protease processing efficiency that impacts viral infectivity. Additionally, monitoring of protease activity in individual virions distinguishes between drug sensitivity or resistance to protease inhibitors in patient-derived samples. These findings demonstrate the feasibility of monitoring enzymatic processes using nanoscale flow cytometry and highlight the potential of this technology for translational clinical discovery, not only for viruses but also other submicron particles including exosomes, microvesicles, and bacteria.

Funder

National Institute of Allergy and Infectious Diseases

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3