Deciphering signalling network in broad spectrum Near Isogenic Lines of rice resistant to Magnaporthe oryzae

Author:

Jain Priyanka,Dubey Himanshu,Singh Pankaj Kumar,Solanke Amolkumar U.,Singh Ashok K.,Sharma T. R.

Abstract

AbstractDisease resistance (R) genes like Pi9, Pita, Pi21, Pi54 are playing important role for broad spectrum blast resistance in rice. Development of near isogenic lines (NILs) using these type of broad spectrum genes and understanding their signalling networks is essential to cope up with highly evolving Magnaporthe oryzae strains for longer duration. Here, transcriptional-level changes were studied in three near-isogenic lines (PB1 + Pi1, PB1 + Pi9 and PB1 + Pi54) of rice resistant to blast infection, to find the loci that are unique to resistant lines developed in the background of Pusa Basmati 1 (PB1). The pathway analysis of loci, unique to resistant NILs compared to susceptible control revealed that plant secondary metabolite synthesis was the common mechanism among all NILs to counter against M. oryzae infection. Comparative transcriptome analysis helped to find out common clusters of co-expressed significant differentially expressed loci (SDEL) in both PB1 + Pi9 and PB1 + Pi54 NILs. SDELs from these clusters were involved in the synthesis and degradation of starch; synthesis and elongation of fatty acids; hydrolysis of phospholipids; synthesis of phenylpropanoid; and metabolism of ethylene and jasmonic acid. Through detailed analysis of loci specific to each resistant NIL, we identified a network of signalling pathways mediated by each blast resistance gene. The study also offers insights into transcriptomic dynamics, points to a set of important candidate genes that serve as module to regulate the changes in resistant NILs. We suggest that pyramiding of the blast resistance gene Pi9 with Pi54 will lead to maximum broad spectrum resistance to M. oryzae.

Funder

Council of Scientific and Industrial Research

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3