Automatic irrigation system with a fiber-optic pressure sensor regulating intrapelvic pressure for flexible ureteroscopy

Author:

Yoshida Takashi,Tsuruoka Noriko,Haga Yoichi,Kinoshita Hidefumi,Lee Sang-Seok,Matsunaga Tadao

Abstract

AbstractIncreased intrapelvic pressure (IPP) due to irrigation during flexible ureteroscopy (f-URS) can pose a risk of postoperative severe urinary tract infection associated with pyelovenous backflow. An automatic regulation system for maintaining safe IPP levels could enable surgeons to perform f-URS safely without postoperative complications. This study aimed to assess the measurement accuracy of an ultra-miniature fiber-optic pressure sensor incorporated into a small-caliper ureteroscope for assessing IPP and to develop an automatic irrigation system linked to this sensor. A porcine kidney was used for the ex vivo experiment. The nephrostomy catheter, connected to the conventional pressure transducer, was placed on the renal pelvis to evaluate the actual IPP (a-IPP). For measuring IPP using the fiber-optic pressure sensor (fo-IPP) built into the f-URS, a diaphragm pressure sensor of Φ250 μm was used. To establish an irrigation system, the optimal proportional–integral–derivative (PID) controller was explored to accurately adjust the irrigation pump flow rate. A high correlation between a-IPP and fo-IPP was confirmed across irrigation pressure values of 60–180 mbar (all, r ≥ 0.7, p < 0.001). When performing bolus irrigation, although fo-IPP showed relatively a higher peak value than a-IPP, the response time of fo-IPP was equivalent to that of a-IPP. After PID parameter optimization, our automatic irrigation system based on fo-IPP smoothly and accurately regulated the intended IPP set in the 5–20 mmHg range without overshooting. We successfully developed and demonstrated an automatic irrigation system regulating IPP based on the PID controller for f-URS, utilizing a fiber-optic pressure sensor. Further research, including in vivo studies, will be needed to assess clinical feasibility.

Funder

The Japanese Foundation for Research and Promotion of Endoscopy

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3