Author:
Finko Mikhail,Koroglu Batikan,Rodriguez Kate E.,Rose Timothy P.,Crowhurst Jonathan C.,Curreli Davide,Radousky Harry B.,Knight Kim B.
Abstract
AbstractIn this work, a coupled Monte Carlo Genetic Algorithm (MCGA) approach is used to optimize a gas phase uranium oxide reaction mechanism based on plasma flow reactor (PFR) measurements. The PFR produces a steady Ar plasma containing U, O, H, and N species with high temperature regions (3000–5000 K) relevant to observing UO formation via optical emission spectroscopy. A global kinetic treatment is used to model the chemical evolution in the PFR and to produce synthetic emission signals for direct comparison with experiments. The parameter space of a uranium oxide reaction mechanism is then explored via Monte Carlo sampling using objective functions to quantify the model-experiment agreement. The Monte Carlo results are subsequently refined using a genetic algorithm to obtain an experimentally corroborated set of reaction pathways and rate coefficients. Out of 12 reaction channels targeted for optimization, four channels are found to be well constrained across all optimization runs while another three channels are constrained in select cases. The optimized channels highlight the importance of the OH radical in oxidizing uranium in the PFR. This study comprises a first step toward producing a comprehensive experimentally validated reaction mechanism for gas phase uranium molecular species formation.
Funder
Laboratory Directed Research and Development
Defense Threat Reduction Agency
Publisher
Springer Science and Business Media LLC
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献