Stochastic optimization of a uranium oxide reaction mechanism using plasma flow reactor measurements

Author:

Finko Mikhail,Koroglu Batikan,Rodriguez Kate E.,Rose Timothy P.,Crowhurst Jonathan C.,Curreli Davide,Radousky Harry B.,Knight Kim B.

Abstract

AbstractIn this work, a coupled Monte Carlo Genetic Algorithm (MCGA) approach is used to optimize a gas phase uranium oxide reaction mechanism based on plasma flow reactor (PFR) measurements. The PFR produces a steady Ar plasma containing U, O, H, and N species with high temperature regions (3000–5000 K) relevant to observing UO formation via optical emission spectroscopy. A global kinetic treatment is used to model the chemical evolution in the PFR and to produce synthetic emission signals for direct comparison with experiments. The parameter space of a uranium oxide reaction mechanism is then explored via Monte Carlo sampling using objective functions to quantify the model-experiment agreement. The Monte Carlo results are subsequently refined using a genetic algorithm to obtain an experimentally corroborated set of reaction pathways and rate coefficients. Out of 12 reaction channels targeted for optimization, four channels are found to be well constrained across all optimization runs while another three channels are constrained in select cases. The optimized channels highlight the importance of the OH radical in oxidizing uranium in the PFR. This study comprises a first step toward producing a comprehensive experimentally validated reaction mechanism for gas phase uranium molecular species formation.

Funder

Laboratory Directed Research and Development

Defense Threat Reduction Agency

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Dependence of Uranium Oxide Polymorphism on Plasma Synthesis Conditions;The Journal of Physical Chemistry A;2024-03-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3