Utilizing adaptive deformable convolution and position embedding for colon polyp segmentation with a visual transformer

Author:

Sikkandar Mohamed Yacin,Sundaram Sankar Ganesh,Alassaf Ahmad,AlMohimeed Ibrahim,Alhussaini Khalid,Aleid Adham,Alolayan Salem Ali,Ramkumar P.,Almutairi Meshal Khalaf,Begum S. Sabarunisha

Abstract

AbstractPolyp detection is a challenging task in the diagnosis of Colorectal Cancer (CRC), and it demands clinical expertise due to the diverse nature of polyps. The recent years have witnessed the development of automated polyp detection systems to assist the experts in early diagnosis, considerably reducing the time consumption and diagnostic errors. In automated CRC diagnosis, polyp segmentation is an important step which is carried out with deep learning segmentation models. Recently, Vision Transformers (ViT) are slowly replacing these models due to their ability to capture long range dependencies among image patches. However, the existing ViTs for polyp do not harness the inherent self-attention abilities and incorporate complex attention mechanisms. This paper presents Polyp-Vision Transformer (Polyp-ViT), a novel Transformer model based on the conventional Transformer architecture, which is enhanced with adaptive mechanisms for feature extraction and positional embedding. Polyp-ViT is tested on the Kvasir-seg and CVC-Clinic DB Datasets achieving segmentation accuracies of 0.9891 ± 0.01 and 0.9875 ± 0.71 respectively, outperforming state-of-the-art models. Polyp-ViT is a prospective tool for polyp segmentation which can be adapted to other medical image segmentation tasks as well due to its ability to generalize well.

Funder

King Salman Center for Disability Research through Research Group Number

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3